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Abstract
Objective. Understanding neural activity patterns in the developing brain remains one of the 
grand challenges in neuroscience. Developing neural networks are likely to be endowed with 
functionally important variability associated with the environmental context, age, gender, 
and other variables. Therefore, we conducted experiments with typically developing children 
in a stimulating museum setting and tested the feasibility of using deep learning techniques 
to help identify patterns of brain activity associated with different conditions. Approach. A 
four-channel dry EEG-based Mobile brain-body imaging data of children at rest and during 
videogame play (VGP) was acquired at the Children’s Museum of Houston. A data-driven 
approach based on convolutional neural networks (CNN) was used to describe underlying 
feature representations in the EEG and their ability to discern task and gender. The variability 
of the spectral features of EEG during the rest condition as a function of age was also 
analyzed. Main results. Alpha power (7–13 Hz) was higher during rest whereas theta power 
(4–7 Hz) was higher during VGP. Beta (13–18 Hz) power was the most significant feature, 
higher in females, when differentiating between males and females. Using data from both 
temporoparietal channels to classify between VGP and rest condition, leave-one-subject-out 
cross-validation accuracy of 67% was obtained. Age-related changes in EEG spectral content 
during rest were consistent with previous developmental studies conducted in laboratory 
settings showing an inverse relationship between age and EEG power. Significance. These 
findings are the first to acquire, quantify and explain brain patterns observed during VGP and 
rest in freely behaving children in a museum setting using a deep learning framework. The 
study shows how deep learning can be used as a data driven approach to identify patterns in 
the data and explores the issues and the potential of conducting experiments involving children 
in a natural and engaging environment.
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1. Introduction

One of the grand challenges in cognitive-motor neuroscience 
is to advance the understanding of human brain dynamics in 
‘action and in context’ in complex real settings. Recent devel-
opments in mobile brain-body imaging (MoBI) technology, 
which integrates scalp electroencephalography (EEG), and 
inertial movement sensors, and context-awareness, have facil-
itated the non-invasive, risk-free, recording and analysis of 
brain activity and movement with high temporal resolution in 
natural settings [1–5]. This technology allows researchers to 
study the developing brain in the pediatric population, which 
is critical to advance fundamental knowledge about devel-
oping patterns of neural activity in young children [6–9]. 
Moreover, quantitative EEG (or qEEG) measurements have 
diagnostic value as objective endpoints for measuring the effi-
cacy of clinical interventions. Despite their growing impor-
tance, very little is known about the constancy and variability 
of qEEG measurements in the general population and specifi-
cally in the pediatric population. Studying normative neural 
patterns present in healthy typically-developing children and 
understanding its variability with demographic factors such 
as age and sex will support the use of qEEG in the prognosis 
of neurological diseases. Therefore, characterizing the norma-
tive maturation of neural patterns in the developing brain and 
how they are expressed in real world settings will not only 
advance fundamental knowledge about developmental brain 
dynamics, but also allow for the timely detection of neuro-
logical disorders.

Video gaming has evolved as an important social activity 
and is rapidly increasing in popularity. Video games are played 
by 97% of teenagers (between the ages of 12 and 17) and 72% 
of the general population as reported by the Entertainment 
Software Association or ESA [10]. According to a recent 
report, 67% of US households own a gaming device and 65% 
of them are home to at least one person who plays more than 
3 h a week [11]. These results were evident from the video 
game industry reflecting net sales of $30.4 Billion in 2016. 
Neurodevelopmental studies and cognitive neuroscience are 
now moving towards engaging wider and more diverse audi-
ences in research. In this study, we harness the popularity of 
video games to capture the natural interest of the children 
while assaying their brain activity in a natural context (i.e. a 
museum) outside of the laboratory.

The main goals of this exploratory study are: (1) Acquire 
and quantity brain patterns in typically developing children 
using MoBI data while the children played Minecraft or were 
at rest in a museum setting; (2) Evaluate the challenges in con-
ducting MoBI measurements from children, ‘in action and in 
context’; and (3) use deep learning methods to assay the pat-
terns of neural activity (qEEG) of the participating children. 
To accomplish the latter, we deployed representation learning 
methods, which allow us to uncover representations needed 
for detection or classification in an unsupervised manner [12]. 
Specifically, we use convolutional neural networks (CNNs) to 
extract different high level complex abstractions as represen-
tations of the data through a learning process that is generally 
hierarchical in nature [13]. In the case of classifying neural 

patters, the CNN model should be able to produce representa-
tions in the deeper layers that can amplify different aspects 
of the input that are critical for discrimination, while sup-
pressing irrelevant variation [14]. A model that has learned a 
good representation would capture the posterior distribution 
of the underlying explanatory factors present in the data [15]. 
Thus, in this study, we also aim to explore the use of CNNs 
for uncovering task/condition specific features learnt by the 
model from EEG time series data. To the best of our knowl-
edge, this is the first MoBI dataset collected among children 
who voluntarily engaged into an experimental task in a public 
setting [16].

2. Methods

2.1. Participants

Two hundred and thirty-three (233) children (167 males/66 
females) aged 6 to 16 years-old of an average age of 8.83 
(SD: 2.23), participated in this experiment at the Children’s 
Museum of Houston during a special 1 d event after the chil-
dren provided Informed Assent and the parents/guardians 
provided informed consent. The study was approved by the 
Institutional Review Board at the University of Houston.

The children were instrumented with a four-channel, dry, 
wireless EEG headset (Muse Interaxon, Toronto, Ontario, 
Canada). The headset contains seven sensors: two are posi-
tioned at the frontal region (AF7 and AF8), two are positioned 
at temporo-parietal region (TP9 and TP10), and the remaining 
sensors served as the electrical reference located near FPz. 
EEG data for each channel (namely, TP9, AF7, AF8, and 
TP10) were measured in microvolts with a sampling rate of 
220 Hz. We also recorded the ‘headband status data’ for each 
EEG channel, which was streamed at 10 Hz. This metadata 
was used to determine if the headset was placed on the head 
properly and if the electrodes made good contact with the 
scalp. The EEG headset is integrated with a head accelerom-
eter (sampled at 50 Hz), which is a basic component of MoBI 
systems. The Muse headset allowed for minimal setup time at 
the expense of whole-scalp EEG coverage.

2.2. Experimental procedure and data acquisition

The children volunteers played Minecraft (Microsoft, 
Washington), a popular video game where the player controls 
a character that can roam a large 3D procedurally-generated 
world. The character can explore and find resources to build 
and craft objects and use tools using virtual blocks within a 
virtual world. The game engages the player into an immersive 
experience where they can interact with other children playing 
at the museum in a shared virtual world.

A designated area at the Children’s Museum of Houston 
was set up with chairs facing a blank white wall as a setup 
to acquire data for the (baseline) rest control condition. An 
adjacent larger area was setup with 20 laptops arranged for 
playing Minecraft. Initially, the children sat in chairs facing a 
blank white wall and were fitted with the EEG headsets. They 
were asked to stare at the wall for 1 min to obtain a baseline 
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recording of their brain activity with their eyes open. Then, 
they were led to the desktops where they could play Minecraft 
for up to 20 min wherein their MoBI data would be collected 
as shown in figure 1. The MuseLab software included in the 
Muse SDK was used for visualization and data recording.

2.2.1. Signal denoising. An online notch filter was applied on 
EEG data while recording it (available as a consumer preset 
for Muse headbands) to remove the 60 Hz power line noise. 
Offline, channels were rejected if the headband status data 
was bad (>3; recommended value from the Muse company) 
for more than 60% of the time. We applied a 4th order, zero-
phase Butterworth band-pass filter (1–35 Hz) to remove both 

low and high frequency noise from EEG data. The data was 
then down sampled to 110 Hz. Next, artifact subspace recon-
struction (ASR) [17], which is available as a plug-in through 
EEGLAB software [18], was used to remove short-time high-
amplitude artifacts in the continuous data; from stereotypical 
(e.g. eye blinks or eye movements) to non-stereotypical (e.g. 
movement, jaw clench). A cut-off threshold of five standard 
deviations for identification of corrupted subspaces, a window 
length of 500 ms with 75% overlap between two successive 
windows were used for ASR-based denoising. Then, signals 
from all channels and subjects were visually inspected using 
time, frequency, and time-frequency domain representations 
to detect and remove segments of data that did not exhibit the 

Figure 1. Experimental setup at the Children’s Museum of Houston. Brain waves were shown to the public as children played minecraft.

Figure 2. Analysis flowchart. Flowchart illustrating data streams and processing steps followed in the analysis.

J. Neural Eng. 16 (2019) 036028
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common spectral power characteristics of EEG signal. Fig-
ure 2 depicts the data streams and the processing steps fol-
lowed in the analysis.

2.2.2. CNN architecture. We used a CNN based deep net-
work, to learn relevant features from denoised EEG data. 
Figure 3 illustrates the architecture of the model used in this 
analysis. We used an architecture inspired from that of [19] 
which used EEG in time series format. However, our architec-
ture separated the spatial convolutions (across channels) and 
the temporal convolutions (across samples) to allow for depth 
in both the branches.

The input to the CNN were denoised EEG time series data 
(128 (samples, ~1.1 s)) per channel. The first layer divided the 
model into two branches. The branching strategy is used to 
account for learning spatial and temporal attributes present in 
EEG as reported in the literature [20–26]. It is recommended 
to separate spatial and temporal filters in CNN for improving 
the interpretation of the model [19, 27] thus motivating the 
use of two branches that have different filter receptive fields: 
one learning temporal filters independent of channels and 
the other learning spatial filters that looks at all the channels 
together, which would help generate kernels that specialize in 
either. Similar spatial-channel specialization ‘hypothesis’ was 
a major factor in developing the ‘Inception’ module within 
deep learning architectures, wherein they decoupled the 
cross channel and spatial correlations to ensure they are not 
mapped jointly [28, 29]. Apart from depth (most EEG studies 
have shallow architectures [30]), proliferated paths is a major 
trend seen in recent years in network design that has shown 
promise in improvement in network performance [31]. Usage 
of multiple branches have shown great promise in recent years 
and have showed significant improvement in performance 
[32–35]. Taken together, these findings motivated the use of 
branched structure with variable filter size in the current work.

This was followed by multiple convolution-pooling layers 
in both branches. Each convolution filter had a filter size of 
(3  ×  1) with a stride of (1  ×  1). The pooling layers were of 
size (2  ×  1) with (2  ×  1) strides. Padding was done for the 

convolution operation to match the dimensions (‘same’ 
parameter in keras: ensures the output dimension is same as 
that of input). A 3  ×  ch convolution layer without padding, 
followed by a pooling layer wass added at the end of the tem-
poral branch to make the dimensions similar for concatenating 
with the activation from the spatial branch, where ch is the 
number of channels analyzed in the network architecture. 
Activations from both branches were fused together using a 
depth concatenation layer. A 1  ×  1 convolution layer followed 
this, similar to what is done in the inception model [20]. This 
promotes representations that combine both temporal and 
spatial branch activations. This was followed by another layer 
of 3  ×  1 convolution without zero padding. A global average 
pooling layer was added to average the activation in each 
filter. The activation of the global average pooling layer was 
then fed into a fully connected dense layer with 128 hidden 
units with a dropout layer (probability of droping units  =  0.5) 
in between, to improve generalisation. A dense layer with two 
output nodes and softmax activation function was present 
at the end to give predictive probabilities for the respective 
classes. ReLU and ELU are the two most commonly used 
activation functions in deep learning models that uses EEG 
[30]. We selected ELU because architectures with this activa-
tion function appear to perform better for processing EEG as 
time series [19, 36]. It further prevents the issue associated 
with ‘dying ReLU’ (region corresponding to x  <  0) seen with 
ReLU [37].

2.2.3. Training and testing. We trained three models shar-
ing similar architecture as shown in figure 3, except for the 
number of channels used in each model. Model 1 used tempo-
roparietal EEG data (128  ×  2) whereas Model 2 used all four-
channel data (128  ×  4). Model 1 was further divided into two 
sub models. Model 1a was trained to discriminate between 
conditions (rest versus engaging in video game play). Model 
1b was trained for classifying male versus female subjects.

Models 1a and 2 were trained to learn task relevant features 
for neural classification from the EEG. Model 1b was trained 
to classify patterns of brain activity based on sex from the 

Figure 3. Network architecture. The input shape was 128 (samples)  ×  ch (number of channels). The output was binary and depends on the 
model (baseline/task or male/female).
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EEG data during rest condition. We did not use all four chan-
nels for sex classification due to the lower number of female 
subjects with all four channels as evident from figure 5.

We divided each subject’s pre-processed EEG data into 
intervals of training (75%) and validation (25%), without any 
overlap between the two. For this, we segmented validation 
set and training set separately first and then extracted win-
dows from these subsets. This ensures that no single sample 
points would be overlapped in both training and test set. The 
data was then segmented into multiple 128 sample windows 
with variable overlap. Some of the windows were removed in 
the cleaning pipeline and those windows would not have been 

included in training/validation sets. The amount of overlap 
was variable to account for the imbalance present across con-
ditions. For instance, rest condition has more overlap as it 
lasts for much less time compared to video game play. So, we 
used 88% overlap for task and 99% overlap for rest condition. 
For training models 1a and 2, we used data from only male 
subjects as they represent the great majority of the participants 
and since only one female subject had all four channels that 
were usable.

For model 1a, we had a total of 43 638 segments in video 
game play condition and 42 422 segments of rest for the 
training set. A total of 13 245 segments in video game play 

Figure 4. Visualization pipeline: PSD is computed on the artificial input generated by the activation maximization method.

Figure 5. Demographics of participants that provided useful MoBI data from at least one, two or all four EEG channels. The age, in years, 
is shown on the horizontal axis, while the vertical axis shows the number of sub.

J. Neural Eng. 16 (2019) 036028
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condition and 12 050 segments of EEG data during rest was 
used for validation. For training model 1b, we had 16 623 seg-
ments of EEG data from male subjects and 15 210 segments 
from female subjects for training. For validation, 4803 seg-
ments of males and 2768 segments of females were used. For 
model 2, we had a total of 7815 segments in video game play 
condition and 6919 segments of rest for training set. A total of 
3569 segments in video game play condition and 2096 seg-
ments of rest EEG data was used for validation.

We trained the models to minimize the ‘categorical cross 
entropy’ loss using ‘Adam optimization’ [38] which is a first order 
gradient-based optimization of stochastic objective function. An 
L2 norm-based kernel regularization was used for all convolution 
filters. A dropout layer was also added between global average 
pooling later and the fully connected layer to improve generaliza-
tion. Each model stopped training when the validation loss fails 
to improve for more than three consecutive epochs (early stop-
ping condition). The model checkpoint was used to save only 
those weights that led to the reduction in validation loss.

In order to find the empirical chance level, the labels were 
shuffled randomly, and the classification accuracy on the test 
set for each trained model was computed separately. This was 
repeated for a total of 10 000 times and the mean accuracy was 
calculated as the empirical chance level i.e. by random guess.

2.2.4. Feature learning. Since we are interested in understand-
ing what features the deep learning model learned to discrimi-
nate between the classes, we used a visualization technique 
called activation maximization [39]. It can be used to generate 
the input which would maximally excite the final output layer 
nodes. Since the model is built using the one-hot-encoding 
basis, each node in the final layer corresponds to either of the 
classes. Using this technique, we initialize a vector having the 
same dimension as our input (128×  channels), in which each 
value is independently sampled from a uniform distribution (0–
1). We then compute the gradient for the activation of the output 
node with respect to the input and take a step in the direction 
of the gradient. An L-p  norm regularization for p   =  6 is used 
to prevent input from taking very large values. We replaced the 
softmax activation function in the final layer to a linear function 
as maximization of a node with the softmax activation can be 
achieved by minimizing the other node which would not give 
optimal results. Using this gradient ascent technique, we can 
obtain the input data that maximally excites an output node that 
corresponding to different classes. The visualization pipeline 
using activation maximization technique is shown in figure 4.  
For all the models, the activation maximization technique 
was run to obtain the input which maximize the activation of 
respective output nodes/condition. Later, power spectral density 
(PSD) using Thomson’s multitaper method (pmtm) as imple-
mented in Matlab (Signal Processing Toolbox Version 7.4, the 
MathWorks, Inc., Natick, Massachusetts, United States) was 
computed to check the frequency comp onent of the signals pro-
duced. Since the methods start with random numbers, to ensure 
repeatability, we repeated this process 100 times for each class/
output node and computed the mean and standard deviation of 
the PSD of the signals generated.

2.2.5. Statistical testing. The frequency-band power in delta 
(1–4 Hz), theta (4–7 Hz), alpha (7–12 Hz) and beta (12–30 
Hz) bands were estimated by computing the one-sided PSD 
using the Thomson’s multitaper method (pmtm). The relative 
band power of each EEG segment was computed by dividing 
the power in each frequency band by the total power for that 
data segment. The mean relative power was then computed for 
each subject. A one-sample Kolmogorov–Smirnov test was 
performed to test for the normality of the EEG features at a 
significance level of 0.05. Since it failed the test for normality, 
we used the Wilcoxon signed rank sum test which is a non-
parametric two-sided paired statistical test that checks if the 
paired difference comes from a distribution with zero median. 
The comparison was done at significance level of 0.05.

We limited the statistical testing for identifying differences 
in EEG features across condition alone (rest versus video game 
play) and not across gender. This is because age could also be 
a factor for the variation of EEG features during rest condition. 
Since we had only few female subjects for each age group, 
we did not perform the analysis across sex. For this case, the 
output of the deep learning visualization will be explained 
qualitatively based on inferences from previous studies.

2.2.6. Correlation analysis. The Pearson’s correlation coeffi-
cient was used to check for the linear relationship between dif-
ferent EEG spectral features with age during the rest condition 
in the subjects; aged 6–16. Due to the low number of subjects 
with frontal channel data, this analysis was limited to the tem-
poral channels only. The analysis was done only on male sub-
jects as we had few female subjects for each age group (figure 
5). By doing so, the sex factor was statistically controlled for. 
For each subject, the mean value of the absolute and relative 
band powers in delta, theta, beta and alpha bands during the 
rest condition were estimated. Pearson’s correlation coeffi-
cient between absolute or relative band power and the age of 
the subject was then estimated. A p  value  <0.05 discards the 
null hypothesis that there exists no linear relationship between 
the feature and the age.

3. Results

3.1. Evaluation of the yield of MoBI recordings in a public 
setting

Unfortunately, many Muse data segment recordings were lost 
due to several factors: (1) EEG headsets had to be recharged 
often and we were not able to record data from 40 subjects 
during these times. As a result, MoBI data was only col-
lected from 193 subjects (out of 233 participants). From the 
remaining datasets, 22 datasets had empty data due to data cor-
ruption and Bluetooth connectivity issues, leaving 171 usable 
data sets. Some of these datasets did not have long segments 
of clean data due to poor placement or fitting of the device on 
the user’s head, particularly in the youngest children, resulting 
in poor electrode contact in all four channels. In addition, we 
could not record the rest condition in a few subjects due to 
non-compliance with instructions or distraction that were 
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typical of crowded places such as a museum (18 subjects 
~8%). After rejecting these subjects, we retained a total of 
117 (88 M, 29 F) subjects, which had usable MoBI segments 
in at least a single channel after the denoising pipeline shown 
in figure 2(a). The distribution of available data across each 
channel is shown in figure 5.

3.2. Analysis of head acceleration

We compared the distribution of mean band-pass filtered 
((0.1–10 Hz), 4th-order Butterworth filter) head accelerations 
during game playing (VGP) and rest conditions (figure 6) asso-
ciated with the EEG windows retained after our preprocessing 
(denoising) pipeline shown in figure 2(a). As expected, head 
acceleration was very small and significantly lower during 
Rest condition compared to the VGP condition (p   <  0.05) 
using t-test. Note that for the VGP group, all retained EEG 
windows consisted of data from male participants only. Thus, 
effects of gender on head acceleration were computed only 
for the rest condition that was comprised of data from both 
boys and girls.

3.3. Model performance

The proposed CNN-based models were implemented in 
python 3.6 using Keras [40] 2.1.5 wrapper with TensorFlow 
backend [41]. All three models were trained separately until 
the validation loss stopped improving for three successive 
epochs. The parameters that yielded good performance were 
empirically selected through multiple combinations. The per-
formance metrics such as classification accuracy, F1 score, 
recall score and precision score for all the models have been 
summarized in table 1. The empirical chance levels obtained 
were (50.2%  ±  0.3%) for model 1a. (56.0%  ±  0.54%) for 1b 
and (55.1%  ±  0.51%) for model 2. The models did not overfit 
to the training data as evident from the smooth reduction in 
both the training and validation loss throughout (figure 7(b)). 
To further show that the model can generalize well across 
unseen data/subjects, we performed the leave one subject 
out (LOSO) validation strategy for the model 1a. That uses 
EEG from temporoparietal channels. Validation using LOSO 
strategy yielded a mean validation accuracy of 67.07% (figure 
7(c)). This further shows the potential of deep networks being 
able to generalize well across subject.

3.4. Feature learning

We used the visualization toolkit, keras-vis, to implement 
the activation maximization technique. Figure 7(a) shows the 

average PSD with standard deviation for the artificial input 
generated by the activation maximization technique. For 
model 1a, which discriminates between rest and video game 
playing conditions, a decrease in theta band power relative to 
the video game play condition was found during the rest state 
condition. Also, a large peak is observed in the alpha band 
during the rest condition, which is absent during the video 
game play.

Similarly, for model 1b, which learnt to discriminate 
between male and female participants in the rest condi-
tions, the visualization method yielded the results shown in 
figure 7(a). Beta power between 13 and 18 Hz was the most 
discriminative feature in EEG for sex classification. There was 
higher 13–18 Hz beta power in females compared to males.

For Model 2, which used all four EEG channels, the visu-
alization step identified peaks in the alpha band during the 
rest condition as seen in figure 7(a). There exists another large 
peak in the theta band during video gameplay compared to 
a suppression during rest condition. Certain small peaks in 
the beta band, particularly in the frontal channels, were also 
observed during the video game play condition.

3.5. Statistical testing

A paired statistical test was performed to check for signifi-
cant difference in spectral features of input EEG between rest 
and video game playing conditions. As seen in figure 7(d), the 
relative theta power was statistically significantly different 
between rest and video game play conditions in both temporo-
parietal channels (p   <  0.01). It was found to be higher during 

Figure 6. Head acceleration dirstribution. (Left) The distribution 
of mean head acceleration of the denoised windows used in the 
analysis during video game play and rest conditions. (Right) 
Distribution of mean head acceleration during rest condition, 
for male versus female participants. * Indicates a statistically 
significant difference between the two groups (p   <  0.05).

Table 1. Model performance metrics: the table shows the different performance metrics on the test set data for all three models. VGP: 
video game play.

Channels Classes Accuracy (%) F1 score (%) Precision (%) Recall (%)

Model 1a TP9 & TP10 Rest versus VGP 67.4 66.8 67.99 65.65
LOSO 67.07 66.57 66.59 66.55
Model 1b TP9 & TP10 Male versus female 65.86 64.68 66.79 62.7
Model 2 All Rest versus VGP 73.68 72.15 72.91 71.4

J. Neural Eng. 16 (2019) 036028
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video game play relative to rest condition. Similarly, relative 
alpha power was found to be statistically significant in TP9 
and TP10 for p   <  0.01; higher during the rest condition. Even 
though relative beta power was not found to be significantly 
different across conditions, the values tend to be higher during 
video game play compared to rest condition, particularly in 
the AF8 electrode.

3.6. Correlation analysis: EEG features versus age

The correlation analysis was conducted to check for a linear 
relationship between the EEG spectral features and the age of 
children. A significant negative correlation (p   <  0.05) for the 

absolute band powers for theta (r  =  −0.36 in TP9 &  −0.32 
in TP10) and alpha (r  =  −0.23 in TP9 & r  =  −0.30 in TP10) 
band was observed in both temporo-parietal channels. Only 
the TP9 channel showed significant negative correlation in 
delta band (r  =  −0.36 in TP9 & r  =  −0.16 in TP10). Even 
though beta power reduced with age (r  =  −0.12 in TP9 & 
r  =  −0.20 in TP10), the correlation was not significant at 
p   <  0.05. In general, all absolute band power across fre-
quency bands reduced with age. Figure 8 shows the general 
trend of these features for the age groups 6 to 12 years old.

Among the relative power terms only the relative delta 
band power (r  =  −0.30) in the TP9 channel showed sig-
nificant negative correlation for p   <  0.05. Even though not 

Figure 7. Feature learning using deep network. (a) PSD (mean and standard deviation) of the input, which were artificially generated 
by the respective models for each class. The yellow shaded region indicates the regions of interesting findings from the deep network. 
(b) Training and validation loss for all three models with increasing epochs. (c) Distribution of LOSO validation accuracy for model 
1a. (d) Distribution of the difference in relative band power in the original EEG across rest and video game playing (VGP) condition. * 
Indicates statistically significant difference at p   <  0.01.
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statistically significant at the significance level of 0.05, the 
relative power in the upper frequency bands, alpha (r  =  0.23 
in TP9 & r  =  0.05 in TP10) and beta (r  =  0.18 in TP9 & 
r  =  0.12 in TP10) correlated positively with age, and the 
lower frequency bands, delta (r  =  −0.3 in TP9 & r  =  −0.1 
in TP10) and theta (r  =  −0.15 in TP9 & r  =  −0.15 in TP10) 
correlated negatively.

4. Discussion

In a single day we recruited 233 children for our MoBI study 
at the Children’s Museum of Houston. We were limited in 
the number of participants we could enroll in our study due 
to the limited availability of both EEG headsets and exhibit 
room space at the museum. Nevertheless, the excellent public 
response to our study supports the use of gamification for con-
ducting research in public spaces. Games that elicit certain 
cognitive events in a targeted fashion could be designed and 
deployed to collect data from a larger number of subjects in 
the future. However, among the 233 subjects, the yield from 
the MoBI recordings was only 50% (that, is 117 subjects) as 
many children did not have reliable recordings from all four 

dry EEG channels. This yield was in part due to fitting prob-
lems as the Muse headsets were designed primarily for the 
adult population, and thus, they have not accounted for the 
variability of form and skull size in young children. This could 
be the reason for poor contact in multiple channels found in 
children (particularly the frontal channels), leading to data 
loss.

4.1. Rest condition

Using a deep learning model, we explored methods to iden-
tify task and sex specific features from the EEG data. All the 
models performed well above the chance level even with only 
two channels. As seen from table 1, the classification accura-
cies increased with the number of channels (model 1a versus 
model 2) available for classification. Using the visualization 
technique in models 1a and 2, we identified alpha power to 
be the dominant feature during the rest condition, which was 
expected. This phenomenon of exhibiting larger alpha power 
during the rest condition has been reported frequently in mul-
tiple studies and is associated with the brain entering an idling 
state [42–45].

Figure 8. Correlation analysis. The colored box corresponds to the standardized mean power for each age group. The power is standardized 
per frequency band for visualization purpose alone. The colored PSD corresponds to the mean PSD with the standard deviation (shaded) 
across subjects. The correlation coefficient (r) was computed for the age groups 6 to 16 years old; *: p   <  0.05.

J. Neural Eng. 16 (2019) 036028
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4.2. Videogame condition

We also observed a theta peak during video game play, which 
was attenuated during the rest condition. An increase in theta 
band power is thought to reflect the increase in cortical acti-
vation due to high mental effort and attention [46, 47]. This 
increase has been widely reported in video game play studies 
[48–50]. Similarly, beta activity, particularly in the frontal 
channels have been reported to be associated with alert atten-
tiveness and goal directed actions [51–54]. Our observations 
from the deep network visualization method agrees with these 
prior findings.

Similarly, model 1b, which was trained to discriminate 
based on sex, showed larger beta power (12–18 Hz) for females 
as the most distinguishing feature. Multiple prior studies have 
identified similar observations in which beta power has been 
reported to be higher in female subjects compared to male 
[55–57]. For example, in a similar study that investigated the 
EEG during rest condition from 1308 subjects, beta activity 
was found to be the most distinctive attribute in discriminating 
between male and female subjects [57]. This also agrees with 
what we observed.

As additional validation of our findings using the visuali-
zation method for deep networks, we performed a statistical 
analysis using a non-parametric paired test to see whether the 
changes in relative band power present in the real data were 
indeed in agreement with what was visualized by the deep net. 
Across conditions, it is indeed found that the relative alpha 
power is higher in rest compared to video game play. The 
relative theta band power was higher during video game play 
compared to rest, which is again in agreement with the visu-
alization results. However, this was statistically significant 
only in the temporal-parietal channels and not in the frontal 
channels. This could be associated with the lower number of 
subjects with frontal channel EEG. Further analysis is needed 
with a greater number of subjects to validate this finding. The 
beta power was also observed to be higher during video game 
play compared to the rest condition, but this did not reach sta-
tistical significance.

We also investigated the age-related changes in spectral fea-
tures in EEG in the temporo-parietal channels. Similar to prior 
research work, we observed that absolute power decreased 
with age in all frequency bands, particularly in the slower 
frequency bands [50, 58–62]. The general trend observed in 
this study were again in agreement with prior research, which 
associates the reduction in slow wave activity with the reduc-
tion in gray matter as we develop/mature [59–63]. The rela-
tive power had a trend of correlating negatively with age for 
delta and theta bands while the faster bands like alpha and 
beta correlated positively with age [50, 59–63]. This trend is 
consistent with what is observed in previous studies. However 
only the theta band in TP9 was found to be statistically signifi-
cant in our analysis.

4.3. Conclusion

In summary, we explored the possibility and challenges 
associated with conducting experiments with children in a 

stimulating complex public environment. We also explored 
the feasibility of using deep learning techniques to help iden-
tify relevant patterns of brain activity associated with different 
conditions: rest versus video game play, and male versus 
female. This approach could be an efficient tool to be used 
in studies to uncover patterns from the data. Overall, the cur-
rent study contributes to a better understanding of how deep 
learning can be used as a data driven approach to identify pat-
terns in your data and explored the issues and the potential 
of conducting experiments involving children in a natural 
and engaging environment. The data analyzed in this study is 
available to the scientific community through IEEE Dataport 
[64].
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