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Abstract— Wearable robotic devices are being designed to
assist the elderly population and other patients with locomotion
disabilities. However, wearable robotics increases the risk from
falling. Neuroimaging studies have provided evidence for the
involvement of frontocentral and parietal cortices in postural
control and this opens up the possibility of using decoders for
early detection of balance loss by using electroencephalography
(EEG). This study investigates the presence of commonly
identified components of the perturbation evoked responses
(PEP) when a person is in an exoskeleton. We also evaluated
the feasibility of using single-trial EEG to predict the loss of
balance using a convolution neural network. Overall, the model
achieved a mean 5-fold cross-validation test accuracy of 75.2 %
across six subjects with 50% as the chance level. We employed a
gradient class activation map-based visualization technique for
interpreting the decisions of the CNN and demonstrated that
the network learns from PEP components present in these single
trials. The high localization ability of Grad-CAM demonstrated
here, opens up the possibilities for deploying CNN for ERP/PEP
analysis while emphasizing on model interpretability.

I. INTRODUCTION

Falls are the leading cause of death, injury, and hospital
admissions among the elderly population. Falls pose a
significant threat not only to the safety and independence
of seniors, but also lead to significant economic burdens.
In 2018 alone, the direct costs from falls were estimated to
be more than $50B, with an average cost of $30,000 per
hospital visit [1][2]. There exists a need for fall prediction
systems that can detect a loss of balance in seniors as early
as possible, in order to lower the rate of morbidity-mortality.

Wearable robotic devices, such as powered exoskeletons,
are being designed to assist the elderly population and
other patients with locomotion disabilities (stroke survivors,
spinal cord injured, cerebral Palsy etc.) [3]. Such devices are
characterized by the implementation of traditional electric
motors with the large gear reductions necessary to achieve
high torques. However, these high torques come at the price
of a reduced response velocity. Recovering a loss of balance
involves quickly activating and engaging multiple muscle
groups. Rapid joint activation is imperative to allow for an
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adequate response time of the mechanical components of
such wearable devices. Numerous applications of wearable
devices to mitigate the risk of falling are being pursued
for rehabilitative and assistance of elderly subjects and
individuals with locomotion disabilities [4].

Neuroimaging (EEG) studies provided evidence for the
involvement of frontal and parietal cortices in postural
control [5][6]. It is possible that the neural information
identifying a loss of balance can be detected prior to
muscle activation with scalp electroencephalography (EEG)
monitoring. The use of EEG scalp signals as markers for an
imminent fall represents a novel approach to allow prompt
balance compensation using wearable robotic devices. Early
identification of fall-related EEG can be used to quickly
activate the motors of the wearable robotic device in time to
prevent the loss of balance. Human EEG studies regarding
balance loss are rare and this lack of data is a major gap
in our ability to understand how the brain detects a loss
of balance and postural adjustments. These EEG signals
provide crucial information regarding the activation time
required for posture compensation or correction and may
be used to actuate mechanical systems such as wearable
robotics. Timely compensation in response to balance
loss will prevent falls and their associated economic costs
and health impact on elderly and locomotion impaired
populations.

Prior studies have identified different components in
the perturbation-evoked potentials (PEP) which are event-
related potentials (ERP) evoked by different perturbations
introduced either expectedly or unexpectedly [6][7]. These
short latency responses are reported to be elicited by
multisensory stimuli including visual, vestibular, and
somatosensory. PEPs have several components consisting
of an initial small positive wave (P1) followed by a
large negative-going potential (N1). These are succeeded
by a positive and negative wave (P2 and N2 respectively) [5].

In this study, initially we examine whether these com-
ponents are preserved in healthy able-bodied subjects who
wore exoskeletons during a series of postural perturbations.
Traditionally, ERP components are identified after baseline
correction and by averaging trials to improve the signal to
noise ratio. However, for using EEG for predicting incoming
falls in normal scenarios, there is a need to decode from
single trial. Therefore, further, we evaluate the potential of



deep learning models to predict loss of balance from single
trials by extracting information from these PEP components.
Significant advancement has been made in using deep learn-
ing models as classifiers in EEG applications and has shown
a significant advantage in improving the classification perfor-
mance of the system. However, one of the major limitations
of using deep learning models in EEG analysis is the lack of
interpretability posed by these models [8][9][10]. However,
to develop more confidence in using deep learning models, it
is important to have model transparency, to better understand
what aspects of the data the network is looking at to arrive
at its decisions. This is a significant problem in sensitive
applications such as detection of balance loss. Therefore,
this paper puts emphasis on explaining the decisions made
by the model evaluated using guided class activations maps
(Grad-CAM) [11]. To the best of our knowledge, this is
the first time Grad-CAM has been applied to deep learning
applications on EEG to interpret model decisions.

II. METHODS

A. Participants

Six young healthy able-bodied subjects (4 males, 2 fe-
males) aged 18-32, participated in the study. All experimental
protocols were approved by the Institutional Review Board
(IRB) at the University of Houston. Written informed con-
sent was obtained from each subject prior to the start of
experimental procedures.

B. Experimental Setup

Subjects were instrumented with a 64-channel EEG cap,
8 Electromyography (EMGs) sensors, and body motion sen-
sors (head, trunk, hip, thigh, knee, and shank). EEG data
were recorded wirelessly at 250 Hz using active Ag/AgCl
electrodes across the whole scalp (positioned according to a
modified 10-20 international system) (BrainAmp DC, Brain
Products, GmbH, Morrisville, NC). The electrodes corre-
sponding to FT9 and FT10 based on the international 10/20
system were moved to replace AFz and FCz electrodes on the
cap (corresponding to the ground and reference electrodes
which were shifted to ear lobes). Similarly, channels TP9,
TP10, PO9 and PO10, were used to record electrooculogra-
phy (EOG) to measure eye-movement related artifacts during
the experiments. Ten surface EMG electrodes from Delsys
systems were mounted bilaterally on tibialis anterior, me-
dial and lateral gastrocnemius, soleus, and peroneus longus.
However, data from muscle sensors were not analyzed in this
study.

Fig. 1. Experimental setup; Left: Subject standing on the neurocom system
wearing the H2 exoskeleton; Right: Experimental protocol

Two basic conditions were tested, with or without a H2
robotic skeleton operating in the passive mode [12]. The
order in which the exoskelton was worn was randomized.
In both conditions, the subject initially stood comfortably on
the balance platform (Neurocom Balance Manager platform)
for two minutes to attain baseline corticomuscular activity
as well as the baseline ground reaction forces. The subject
was then exposed to 32 backward translations of the support
surface of constant duration (400 ms), displacement (6.35
cm) and velocity (15.875 cm/s). The timing of the pertur-
bations was randomized so the subject would not be able
to anticipate the time at which the perturbation would occur
within the five second trial window. Each task was divided
into two blocks of 16 perturbations separated by breaks to
avoid fatigue. The protocol is summarized in Figure 1.

C. Signal Processing

All analyses were performed offline in MATLAB R2019b
(MathWorks, MA) using the custom functions and the open-
access EEG-processing toolbox, EEGLAB [13]. The prepro-
cessing pipeline is summarized in Figure 2. The raw EEG
and EOG signals from individual sets of trials were initially
high pass filtered using a 4th order zero-phase Butterworth
filter with a cutoff frequency of 0.1Hz. These were then
passed into a low pass filter (4th order zero-phase Butter-
worth filter) with a cut off frequency of 50 Hz. The filtered
signals from the individual sets of trials were there appended
together. Eye artifacts were removed adaptively using an H-
infinity filter [14] with gamma parameter = 1.1 and q param-
eter set as 1e-11. Artifact subspace reconstruction was then
performed to remove large sudden bursts. A sliding window
(length of 500 ms) and a less conservative threshold of 20-40
was used to identify corrupted subspaces. The signals were
then decomposed into the independent components using
Infomax independent component analysis (ICA). This was
done to remove retained eye, muscle, or bundle artifacts.
Stereotypical patterns of topoplot distribution, time-series
data and PSD distribution, associated with the artifacts were
evaluated manually to remove such artifactual components.

Fig. 2. Preprocessing flowchart



D. ERP Analysis

To identify the components in the ERP, initially, for
each of the trials, baseline correction was performed by
subtracting the mean of the one-second window prior to the
perturbation onset for each individual channel. Then the data
from the perturbation trials associated with the person being
perturbed with and without the exoskeleton were averaged
separately to increase the signal to noise ratio and view the
ERP components.

E. Classification

A Convolutional neural network-based model was em-
ployed to predict the loss of balance from 200ms long single-
trial windows.
Class 1: 200ms windows starting from 0.2 seconds prior to
the perturbation onset until 500ms post perturbation with one
sample (4ms) increment from a total of 64 trials (32 trials
with and 32 trials without wearing the exoskeleton;
Class 0: To avoid potential bias instilled by comparing
against baseline separated in time (potential drift/change in
impendence could bias results), we selected windows based
around these trials not involved with posture correction to
serve as a control condition. Windows were selected one-
second pre and post the perturbation onset and end. This
also ensures there is higher EEG variability compared to
continuous standing baseline conditions.
Initially, the trials were randomized and 70 percent of the
trials were used to build the training set, 10% for validation,
and 20% for the test set. This ensures, no single sample is
common in either set and avoids any potential data leakages.
This was repeated 5 times to create 5 fold cross-validation
sets. In all the folds, both classes had an equal number of
examples each.

F. Architecture

Fig. 3. CNN architecture block diagram

The architecture employed is shown in Figure 3. The input
to the model was 200 ms long pre-processed EEG segment
(50 samples x 60 channels). The data were normalized by
dividing by the maximum absolute amplitude across the
training set. The model consists of 4 convolution layers of 8
hidden units each (3x1 kernel dimension, stride =1). A final
convolution layer with a kernel spanning all the channels
(L5) was also used to combine information from all the
channels. L2 kernel regularization was used with a value of
0.01 on all the convolution filters. Exponential linear unit was
used as the activation function for all layers. Pooling layers
(2x1 kernel dimension, stride = 2) succeeded two consecutive
convolution blocks to reduce the dimension and improve the
translation invariance associated with trial by trial variability.

This follows a Flatten layer prior to the two fully connected
units with softmax activation function to generate prediction
probability for each class. Dropout of 0.5 was used to reduce
overfitting. Adam optimizer was used with a learning rate of
0.0001 to train the model with a batch size of 128 samples
for a total of 250 epochs. Early stopping condition was used
to stop training if validation loss stopped improving for 5
consecutive epochs. Different copies of the same model were
used for each of the 6 subjects. The proposed models were
implemented in python 3.6 using Keras 2.1.5 wrapper [15]
with TensorFlow backend.

G. Grad-Class Activation Map

Grad CAM is a class discriminative localization technique
used to identify discriminative regions in the input used by
a CNN to arrive at the decision. The algorithm is detailed
in Selvaraju et. al 2017 [11]. To obtain the localization
map Lc

Grad-CAM ∈ R u × v of height u and width v, we
initially computed the gradient of the score for each of the
class of interest with respect to the activation Ak of a layer
(typically towards the end of the network). These are global
averaged pooled over the height and width dimension to
obtain importance weight αc

k .
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Here, Z is the number of samples/pixels in the feature
map and i, j corresponds to the activation location. Then
a weighted combination of the activation map, followed by
a ReLU activation function was performed to obtain the
activation map. ReLU was then employed to isolate features
that have a positive influence on the class of interest while
avoiding negatively contributing features.

Lc
Grad-CAM = ReLU(

∑
k

αc
kA

k) (2)

This resulted in a coarse heatmap of the same size as
the convolutional feature map. Finally, we upsampled the
heatmap to the input resolution. We used Keras-vis toolbox
for implementing the grad-CAM [16]. In this study, the
penultimate layer considered was P2 instead of L5 as we
wanted to isolate relevant channels. After the model is
trained, the mean activation map is then computed across
the trials to evaluate the localization capability. From the
averaged temporal CAM, the maximum value from each
channel was estimated to identify the scalp distribution for
the channels prioritized by the model for decoding.

III. RESULTS

A. ERP Analysis

Figure 4 shows the ERP components in the Cz channels
from one of the representative subject (HS6).

As can be seen from the figure, P1, N1 P2 components,
in particular, are present in both conditions with and without
the exoskeleton. Here, the difference in amplitude was found
to be indicative of ordering effect (EXO first or not) rather
than resulting from wearing exoskeleton. However, the issue



TABLE I
5 FOLD CROSS-VALIDATION SCORES FROM ALL SUBJECTS; CHANCE LEVEL WAS 50% IN ALL CASES AND ALL NUMBERS ARE IN PERCENTAGES

Subject Training Accuracy Validation Accuracy Test Accuracy F score P score R score (%)
HS1 85.3 ±2.6 78.1 ±5.3 81.4 ±3.7 81.4 ±3.7 81.8 ±3.8 81.4 ±3.7
HS2 86.6 ±1.8 80.7 ±2.9 78.6 ±5.5 78.5 ±5.6 78.7 ±5.5 78.6 ±5.5
HS3 81.1 ±3 76.8 ±1.4 76.8 ±5.1 76.8 ±5.1 77.4 ±5.7 76.9 ±5.2
HS4 79.9 ±0.8 75.8 ±2.5 72.9 ±5.3 72.8 ±7 73.3 ±5.5 72.9 ±5.3
HS4 75.5 ±4. 66.8 ±5.9 66.9 ±6.9 66.8 ±6.9 67.1 ±7.2 66.9 ±6.9
HS6 80.7 ±2.5 72.1 ±8.8 74.8 ±4.4 74.7 ±4.2 75.2 ±4.3 74.8 ±4.1
Total 81.5 ±2.5 75.1 ±4.5 75.2 ±5.1 75.2 ±5.1 75.6 ±5.3 75.2 ±5.1

Fig. 4. Averaged PEP from HS6. The arrows indicate the main PEP related
components

of order effect is not addressed further in this paper. Since
both conditions regardless of the order of EXO use contained
EEG components of interest, the data from both conditions
was combined for classification and model development.

B. Decoding Performance

The 5-fold cross-validation classification results are sum-
marized in Table I. The mean across subject training classi-
fication score was 81.5 ± 2.5 %, validation score of 75.1 ±
4.5 and the test score was 75.2 ± 5.1%. Subject 1 yielded
the highest accuracy with a mean test accuracy of 81.4% ±
3.7% whereas subject 5 had the lowest classification score
of 66.9% ± 6.9 % on the test set. The F1 score is similar
to the test score indicating there exists no class imbalance
issue and that the network is not prioritizing one class over
the other

C. Interpreting the deep network

Here, the time-averaged Grad-CAM based relevance map
is shown in Figure 5. It is able to temporally localize the
relevant section corresponding to the N1 component and
also isolate the most relevant channels. From the scalp
distribution of the CAM, it is evident that the CNN looks at
windows surrounding the N1 component, the CNN prioritizes
the channels surrounding Cz to arrive at the decision. The
model was able to identify relevant features in EEG in all
the subjects both spatially and temporally.

To check whether the model only learns features from
selected channels alone, ERP sections from different time
points from a single subject (HS6) was sampled and how the
Grad-CAM varies when the CNN sees different PEP com-
ponents was evaluated. The result is summarized in Figure
5. Depending upon the data being shown, the CNN looks
at different combinations of channels and time windows to
arrive at the decision. Initially preceding the P1 component,
close to the onset of perturbation, the Grad-CAM indicates
that CNN looks at multisensory information from visual and

somatosensory regions of the brain. During windows with
a clear P1 component, the relevance shifts towards central-
parietal networks. During the N1 component, the CNN shifts
more centrally towards Cz. Towards P2, the network looks
mainly at the parietal regions. Overall, the attention/relevancy
shifts depending on the prominent component present in the
window.

IV. DISCUSSION
The usage of deep networks for sensitive applications

requires a careful understanding of the features prioritized
by the model to arrive at the decisions. Here we provided the
first application of Grad-CAM based feature visualization
of CNN on EEG and use it in the context of balance loss
prediction. From the classification results, we validated
that the model was able to predict the loss of balance
using EEG data single trials of 200 ms and was able to
localize (both spatially and temporally), the relevant ERP
components which have been traditionally shown to be
related to perturbation.

Among all the subjects, HS1 and HS2 have the highest
classification score. They also have relatively localized
relevancy maps both spatially and temporally. In contrast,
HS5 had the lowest classification score. A careful exploration
of the ERP component suggests the lack of a clear P1 peak
for this subject. This subject had significant prior experience
on the Neurocom platform and also had a relatively higher
number of components associated with muscle artifacts
compared to other subjects during ICA cleaning. Whether
this might have influenced the results needs exploration.

The P1 component is said to be the earliest nonspecific
cortical response to a perturbation that is driven by so-
matosensory input [5][6]. Comparing the localization cor-
responding to the P1 component, CNN looks both at cen-
tral and parietal regions. This is in agreement with prior
studies that identified the best localized cortical source that
represents P1 to be Brodmann area (BA 5) which lies in
the parietal region [17]. When the network sees windows
having both P1 or N1 components, the network prioritizes
both the sections temporally with higher relevance given to
N1. Similar observations are seen during windows involving
both N1 and P2 components as well. In both these situations
when it localizes multiple regions temporally, the spatial
spread is also higher as it involves central parietal on top of
frontocentral regions. During windows of the P2 component,



Fig. 5. Grad-CAM results. Top row indicates the most relevant channels for the CNN to classify the window involving N1 component; Middle row
indicates temporally which part of the input the network focussed on; Bottom row corresponds to the ERP of the input window with mean and shaded
section corresponds to the standard deviation

Fig. 6. Grad-CAM results for different PEP components from HS6; Top row indicates the most relevant channels for the CNN to classify the respective
input window; Middle row indicates temporally which part of the input the network focussed on; Bottom row shows the averaged ERP of the input window
with mean and shaded section corresponds to the standard deviation

the CNN shifts towards the parietal and parieto-occipital
regions.
The N1 component is one of the most reproducible com-
ponents among the PEPs and has been previously reported
to be maximally present in the FCz or Cz electrode in

prior studies [18][7]. In all subjects, the CNN model clearly
identified Cz to be the most relevant channel to evaluate
windows with the N1 component. The model was able to
localize the component clearly temporally as well. Subject
3 had a larger spread in the scalp distribution; however



looking at the temporal relevancy map, we can see that
the network also prioritized P1 peak in those windows,
explaining the subject’s larger spread towards the parietal
regions. These inferences show that the network is looking
at relevant features instead of inferring it from random data
points. There is a possibility that the network is learning
from movement/muscle artifacts, however after looking at the
channels the network focused on, it appears that the network
is prioritizing relevant brain regions instead of peripheral
channels (which are expected to be easily corrupted by these
artifacts).
In conclusion, in this research, we showed that the ERP
components N1, P1, and P2 are present when subjects
that wore exoskeleton were perturbed posturally. We also
implemented a CNN architecture to decode balance loss from
single-trial EEG. We introduced the application of Grad-
CAM based visualization, to understand relevant features
learned by CNN, highlighting its promise for future EEG
applications. The Grad-CAM visualization technique showed
that the model was able to identify and learn from different
PEP components from single trials.

V. LIMITATIONS AND FUTURE
CONSIDERATIONS

The emphasis of this paper was on the interpretability
of CNN for ERP applications. It was not on finding the
optimal model; therefore the classification performance could
be improved with optimized hyperparameter selection or
transfer learning. Since we observed the traditionally studied
components to be retained even during EXO condition,
we did not separate trials based on EXO vs No EXO to
increase the number of samples for the model to learn
from. However, there is a possibility of differences associated
with these that could negatively affect the results. Currently,
the decoding is performed using all 60 channels from 200
ms windows. However, looking at the grad CAM activity
map, it clearly suggests the decoder looks at a narrower
window and is very selective in the channels. This opens
up the possibility for reducing the number of channels, time
windows required, all of which are essential from a real-
time application standpoint. Similarly, a key factor is the
processing time and how early we can predict the incoming
fall. Having an advance knowledge of an impending fall,
provides the nervous system time to react to activate both
simple reflexes and more complex automatic neuromuscular
responses to prevent a fall. This might be true for some
patient populations who have somewhat intact kinesthetic,
and proprioceptive systems, that could produce intrinsic
responses in combination with exoskeleton responses. How-
ever, individuals with serious spinal cord injuries are going
to be reliant upon the exoskeleton responses, so kinesthetic
and neuromuscular actions are going to have no meaning to
them due to the nature of their condition. In such cases, it
will be up to the brain to detect an impending fall with the
hope that is enough lead time to activate the exoskeleton to
prevent a fall. Future studies will explore these in more detail
and should examine the changes involved during perturbed

walking as opposed to standing. This will likely involve more
inter-cortical interactions and would be a useful test of this
methodology’s ability to identify those interactions.
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